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Power system structure and control centres

Keeping the balance between supply and demand
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Microgrid for remote islands / unelectrified areas
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- Distributed energy sources control

VPP and smart city Collaboration platform with various companies / operators
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Main responsibilities of the control room operator

* Ensuring a balanced system

* Monitoring and enacting interchange
activities with neighbouring control
areas for congestion management or
during incidents

* Monitoring of line loadings, voltages
and performing transmission
switching actions in case of need

Image source: https://www.elia.be/en/grid-data/transmission
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Power system operation today

Operator
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Building blocks — “Micro services”

* State — estimation
. Measurement based, “real-time” service

. Provides the actual state of the system, deals with imperfect information, such as non-synchronised
measurements or missing measurement data (especially important in distribution systems )

* Power flow analysis
. Calculation of the system state for a given generation and demand snapshot
. Identification of potential congestions in the “near” future
. Analysis of the impact of contingencies, e.g. N-1 security analysis

* Optimal power flow analysis
. The first step of decision support
. Techno-economic optimisation of the control actions

. Examples: Minimizing system losses, improving voltage profile of the network, minimising re-dispatch
costs, choosing optimal generation control actions in case of contingencies, ....
Q




Building blocks — “Micro services”

* Switching sequence validation
* Assisting the operator during switching event
* Making sure that no unwanted short-circuits, or interruptions occur

* Short —term generation and demand forecasting
*  Usually combined with weather data services
 Essential for short term operation and balancing

* |Interchange scheduling

 Time ahead scheduling of active and reactive power interchange with neighbouring
networks

* Coupled to day-ahead, intraday and reserve market operations

~




Services which can be connected to the EMS

* Geographic information system (GIS)
* Weather data services

* Fault location detection

* Workforce management

* Billing services

* Market platforms

~




Bottle neck: Human in the loop

Operator




Desicion Support Tools for Grid Operators
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In the future, operators will have supervisory roles
and interface with many stakeholders all the time

Decision support platform

Optimize
Operator/ 2 \
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The challenge: system operator process must adapt under new

Controls

paradigm

TODAY

FUTURE

What is happening now?
Observing current state

Providing problem alerts

Operator making reactive
decisions

Predefined control actions

What will happen next?
Predicting states & risks

Providing problem assessment

Proactive decision support for
operator

Continuous real-time optimal
control actions

~

Making use of better information
Making use of more flexibility

=>» Choices

=» Reliable, secure and sustainable!
= What is the objective?
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Planning Operations
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Automated grid operation — Analogy to automated driving

Level O: No
automation

Level 1: Assisted
driving

Level 2: Partly-
automated

Level 3: Condition-
automation

Level 4: Highly-
automated

Level 5: Full-
automation

<

Description

Driver carries out all functions, e.g. steering,
accelerating, ...

Provision of warnings for speed, line-assistant,

Grid operator initiates all control actions based
on measurements. System provides
observability and remotgikontrol possibility

sion of situational
ort

Constant or requested
awareness and decisioff su

Automation of line assistance TQd&YoS SltUzaterﬂ actions are taken autonomously

Vehicle can change Ianes, use indicators and so
on. Driver only

Vehicle carries ou driving tasks and gives
highly specialised tasks to driver

Vehicle performs all driving tasks. Driver only
sets destination.

after activation by the operator

Certain control actions are taken autonomously
based on predefined event - triggers

Daily network operation is handled by system,
also during contingencies. Operator only
required for highly specialised tasks

No more operator is needed. The supervisor
only provides target values for the system.

Source: Martin Braun, Heinrich Hoppe-Oehl, Julia Koenig, Andreas Kubis, Inga Loeser, Christian Rehtanz, Robert Schwerdfeger,
Wolfram Wellssow, Systematisierung der Autonomie- stufen in der Netzbetriebsfiihrung, VDE Impuls 16




Examples of decision support provision

Mathematical models
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Probabilistic reliability criteria )/Fﬂm

* N-1is an edge case of probabilistic reliability
 All N—-1 contingencies have the same probability
Two contingencies do not occur at the same time
 The impact of all contingencies is equal

* Inreality, the definition is still not unique orRoprBLy !
. . YOUR
*  What is considered as N — 1? WL WoRe MOTVATON

* E.g. transmission tower vs. circuit

* Substations |
 Substation as a whole? ' Y ITTIIRTT
* Bus bars, breakers, transformers differently?

By defining a contingency set, TSOs inherently make a reliability assessment!
* Comparison of probabilistic reliability criteria is challenging!

<

—JORGE CUAM © 2016
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Application to real network

* Development of the Garpur Quantification Platform (GQP) to perform cost
benefit analysis of different reliability criteria

Consider TSO reliability control actions

Evaluate the cost-benefit of the reliability criterion based on detailed real-
world test cases (RTE pilot)

Objective considers weighted cost of preventive and corrective actions as well
as possible blackout

* That way, low probability high impact events can be analyzed

* Allows also to quantify failure of corrective actions

Multi — stage decision process

* Preventive, post — contingency short term and corrective actions

Security constrained optimal power flow, MISOCP formulation

* Allowing generator dispatch, corrective load shedding, PST actions, topological changes
* Using NF, DC and LPAC formulation to approximate AC power flow

* ACinitialization and post optimization check

Real life demonstration

* Pilot test on the South — France transmission network

* 600+ buses, 1000+ branches, ...

CIM converter for efficient data exchange to Matlab

through the GARPUR quantification platform, 2017
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| -{ Corrective problems
Prev. Solution
N-1Rmac 1 v{ Corrective problems
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Preventive { Corrective
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: Prev. Solution
ProbabilisticRmac '| Corrective problems
‘ Prev. Solution ‘ Prev eoiGiion
| adthubslide bbb

Total Rmac Cost Preventive Rmac Cost
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| z Preventive Rmac Cost Z z { Corrective Rmac Cost
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Corrective Rmac Cost z Corrective Rmac Cost

F Geth, H Ergun, D van Hertem, E Heylen, IB Sperstad, GARPUR D7. 3-A broader comparison of different reliability criteria




| L ﬁGARPUR
Comparison of reliability criteria and sensitivities “/—

* Most sensitive parameter is
the choice of the value of lost
load (VOLL)

* The choice of VOLL
determines the trade-off
between preventive security
and curative actions

* For high values of the VOLL,
the probabilistic security
converges to deterministic N-1

~

Preventive cost Corrective + Blackout risk
9000 . \ 7000
I /OLL = 26000 Euro / MWh
8000 |- ] VOLL = 5000 Euro / MWh
[ VOLL = 1000 Euro / MWh
7000
5000
6000 -
e e
g 5000 ig 4000
'*é 4000 - é 30001
o o
3000
2000
2000
1000 10007
0 0
RMAC N-1 RMAC
Criterion
RMAC
VOLL Preventive  Corrective + Total risk in €  Preventive Corrective + Total risk in €
costin € Blackout risk costin € Blackout risk
in€ in€
26 000 €/MWh 8155 1716 9871 8155 1716 9871
5000 €/MWh 8155 330 8485 8155 330 8485
1000 €/MWh 8155 66 8221 0 6001 6001

F Geth, H Ergun, D van Hertem, E Heylen, IB Sperstad, GARPUR D7. 3-A broader comparison of different reliability criteria

through the GARPUR quantification platform, 2017
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Reactive power management and optimal PST
set point determination under contingencies

* Using a (security constrained) optimal
power flow approach

* Optimal reactive power dispatch of

1‘ EU-SysFlex

Reactive Power Management: Comparison of Expert-based and Optimization-based approaches for dispatcher training

generators and compensation equipment i N ! . o 7

. . . N K. A I & A
under contingencies av=ntll A=l AP
* Optimal PSTs set point changes under v - UF ¥ - UR. K v
contingencies el b AVt | o g i 1
* Nonlinear, relaxed and linearized power ey B gl bl ¢ O et A
flow formulations MRl | PR g

. Tractable formulation to include discrete
actions, such as switching or PST taps

. Tractable formulation to deal with (@) TS1 (b) TS2 () TS3
nonlinea rities, e.g. PST impeda nce Change Figure 2: Nodal voltages for reference contingency without generator redispatch
. Evaluation of different objectives
.. Timestamp TS1 TS1 TS1
* Used as benchmark for the PSE training Approach OBA  EA  Difference | OBA  EA  Difference | OBA  EA  Difference
Redispatch cost [€] | 378408 447540 60141 | 343043 301638 48505 | 287075 366100 79034

system

<

Table 4
Redispatch cost for reactive power management




Flexibility needs assessment — EUniversal project

* Flexibility needs assessment using chance constraints for
risk-based operation,

* Provision of zonal flexibility needs to reduces computational
needs,

* Derivation a network state-driven flexibility activation
signal,

* Consideration of the effect of reactive power flexibility
activation with distribution network load power factor.

Phase mapping

Inputs
Nodal load - . Solve Flexibility needs Outputs
Forecasts Ggﬁ:?;?:n assessment optimal power
Forecast error | » flow (FNA-OPF)
A4
Chance constraint ) Nodal
Output nodal temporal and locational > ENA
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-lexibility activation signal tool set-up

ntegration in the German demo

1
! X Processes Docker container#1 Docker container#2
Meta data ' :I

Generic load profiles ! Load profile mapping ) Python

Forecast information ! :I Inputs @ grid_data.dgs Julia FNA| grid.csv
1
' Key load_profile_info LR Flexibility_needs_assessment.jl
| :I functionality - - Scenario_generation.py e - )
' Scenario generation
1

Network Layout ! Phase estimation

1
1
1

[P I 1. Grid data
2. Scenarios

Three phase flexibility

Flexibility limits needs assessment DSO risk level Volume

(Optional block)

Hashmi, M.U., Koirala, A., Ergun, H., Van Hertem, D. (2022). Flexible and curtailable resource activation in three-phase unbalanced distribution networks. Electric Power
Systems Research, 212, Art.No. 108608. doi: 10.1016/j.epsr.2022.108608

Hashmi, M.U., Koirala, A., Ergun, H., Van Hertem, D. (2021). Flexible and curtailable resource activation in a distribution network using nodal sensitivities. Presented at
the 2021 International Conference on Smart Energy Systems and Technologies (SEST), Vaasa, Finland, 06 Sep 2021-08 Sep 2021. ISBN: 978-1-7281-7660-4. doi: 25
10.1109/SEST50973.2021.9543215 Open Access



https://doi.org/10.1016/j.epsr.2022.108608
https://doi.org/10.1109/SEST50973.2021.9543215
https://lirias.kuleuven.be/retrieve/632199

Examples of decision support provision

Al based models
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Power [MW]

Belgian electricity system — a bird’s eye view
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The renewable generation side
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Short-term load forecasts at the TSO

Total load

12 000

0 C00

2C00

MW

8C00
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6000
Time horizon

—— Measured & Upscaled — Most recent forecast —— Day-ahead forecast

=) he : . — V\.Ieek'-ahe'ad'férecast.

A A
% Image source: Elia
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Incorporating uncertainties

Total load
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Image source: Elia
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Performance of TSO forecasts (1)

22 1.6, 0.60 zone,
| 4 ® AT
| .50 ® CH

1.8 , DE

1.6 1.24 0.45- ® DK

: ES
0.40 ®Fl

1.4 T 1.0 o FR

) . ) 0.35 o

012 - r o et

ey , 0.8 , 0.30 ot s

©1.0 . : '

I.It.l ' l, 0.25- / ﬁé
0.8 o . 0.6 - 0.20 | @ PL
0.6 ' ' L ®PT

’ : 0.4 ° = 0.15- 1> SE

0.4 z = L 0.1010.4: - reg-

5 0.2 o+ -

02 g e e 0-05" ®

0.0 - 0.0+ ‘ ~ ' ~ ~ 0.00
0 10 20 30 40 50 60 0 2 4 6 8 10 12 14 16 00 1.0 2.0 3.0 40 5.0

Average load [GW] Average wind [GW] Average solar [GW]

Kazmi, H., & Tao, Z. (2022). How good are TSO load and renewable generation forecasts: Learning curves, challenges, and the road ahead. Applied Energy, 323, 119565.
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Performance of TSO forecasts (2)
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Kazmi, H., & Tao, Z. (2022). How good are TSO load and renewable generation forecasts: Learning curves, challenges, and the road ahead. Applied Energy, 323, 119565.
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The temporal aspect
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Kazmi, H., & Tao, Z. (2022). How good are TSO load and renewable generation forecasts: Learning curves, challenges, and the road ahead. Applied Energy, 323, 119565.

34




Can we improve existing forecasts?
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Kazmi, H., & Tao, Z. (2022). How good are TSO load and renewable generation forecasts: Learning curves, challenges, and the road ahead. Applied Energy, 323, 119565.
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Challenges with this vision

* Black-boxes galore

* Lack of expertise and knowledge

* Lack of required data (often in the right format)

* Different challenges for different spatial and temporal scales

* Non-stationarities (Covid-19, electrification, RES, climate change)

* Fit-and-forget does not scale well

~
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Real world complexity — model selection and combination (1)

White-box Black-box Grey-box
models models models




Real world complexity — model selection and combination (2)

Adapted from Solargis

1.0

Forecast skill

Lead time (hours) 2 3456 48 72 240

Ground-based methods Satellite-based methods NVP models

~
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Accuracy does not solely depend on better algorithms

1 smart meter (mean MAPE = 166%)
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Zufferey, T., Ulbig, A., Koch, S., & Hug, G. (2016, September). Forecasting of smart meter time series based on neural networks. In International workshop on
data analytics for renewable energy integration (pp. 10-21). Springer, Cham.
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How do you even test certain long-term forecasts?

105 7—

100 / 99.4 ‘High load’
CENTRAL

88.3
= 90 7/ 87.4 88
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=
85
80 7/
75

70 f 7 7 7 7 7 7 7 7 7 7 7 7
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

e [OW @ @ « WEM @ @« WAM  cmmmm HIGH Q= CENTRAL

*the 2020 value is an estimation

Adapted from Elia Report 2021
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Emerging challenges (1)

* How to activate distributed flexibility with millions of DERs
* Robustness guarantees
* Incomplete and missing information
* How to determine counterfactuals in flexible mode operation?
* A/Btesting
* Model-driven approaches
 How to keep trigger-happy data scientists in check?

* Occam’s razer
* Deep / reinforcement learning is not always the answer

~
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Emerging challenges (2)

e Operationalizing ML
 Code is often versioned, but data, models, experiments and predictions are not
*  Ensemble models win competitions but create operational nightmares
* Torch. manual_seed (3407) is all you need

~
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From data to insights and decisions: machine learning

Artificial intelligence

v

Money

Expectation

Text books

Real world
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The future control room requires integration of many skills

N\_Ople
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Energy domain « Requiremenis * Data. Engineering  « HL Hodel Deployment
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ML Use-Cases : Enginee : ) Software engineering skills
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+ Hodel Teskng € Ted rig

«Data n«ai\ga\it Valid V\f

Energy domain knowledge

A4
Valohai, MLOPs, 2021
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Fusing domain expertise with ML
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Collaborative and transfer learning

Performance over time, using training data of X months, with December as final month
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Kazmi, H., Suykens, J., Balint, A., & Driesen, J. (2019). Multi-agent reinforcement learning for modeling and control of thermostatically controlled loads. Applied energy, 238, 1022-1035.
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The road ahead

Feature stores Privacy aware Value oriented
and the rise of learning and forecasting
service providers control
(FaaS, Caas, ...) techniques (fed.
Learning, diff.
privacy, ...)

<
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Future needs for decision support tools

* Develop tractable methods, which are sufficiently accurate
* Choice of steady state operational points considering system dynamics

e Dealing with uncertainty: How to find control actions, which are robust
with respect to many operational scenarios?

* Risk-based operation of the power system: Finding trade-offs between
preventive and corrective actions based probability of system states,

contingencies, and their impact
* Visualisation: How to convert data in useful information?

~
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Thank you for your attention!

Hakan Ergun Hussain Syed Kazmi
() hakan.ergun@kuleuven.be (2) hussainsyed.kazmi@kuleuven.be
) https://github.com/hakanergun () https://github.com/hussainkazmi/
m https://www.linkedin.com/in/hakan-ergun/ m https://www.linkedin.com/in/hussain-kazmi/
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List of open source EnergyVille toolboxes

PowerModelsACDC.jl
. A hybrid AC/DC OPF package based on PowerModels.jl
. https://qithub.com/Electa-Git/PowerModelsACDC.jl
* OptimalTransmissionRouting.jl
. https://qithub.com/Electa-Git/OptimalTransmissionRouting.jl

* PowerModelsDistributionStateEstimation.jl
. A Julia Package for Power System State Estimation
. https://qithub.com/Electa-Git/PowerModelsDistributionStateEstimation.jl

* FlexPlan.jl
. ﬁn qt??n-source Julia tool for transmission and distribution expansion planning considering storage and demand
exibility
. https://qithub.com/Electa-Git/FlexPlan.jl
* StochasticPowerModels.jl
. An extension package of PowerModels.jl for Stochastic (Optimal) Power Flow
. https://github.com/timmyfaraday/StochasticPowerModels.jl

<
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